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Abstract

A new multivariate data analysis method called smooth orthogonal decomposition (SOD) is proposed to extract linear

normal modes and natural frequencies of multi-degree-of-freedom and distributed-parameter vibration systems. It is

demonstrated that for an undamped free vibration of a multi-degree-of-freedom system, the computed smooth orthogonal

modes are in direct correspondence with the actual normal vibration modes and the smooth orthogonal values are related

to the corresponding natural frequencies. The same is also shown to be true for lightly damped free vibrations of both

lumped- and distributed-parameter systems. In contrast to the intrinsic limitations of the proper orthogonal decomposition

(POD) analysis, which requires the knowledge of system’s mass matrix to extract normal modes and cannot uniquely

identify modal subspaces that have similar proper orthogonal values, the SOD is shown to overcome both of these

deficiencies. Numerical examples are provided to compare the performances of the POD- and SOD-based modal

identification in various types of vibration environment.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is about a new multivariate data analysis method called smooth orthogonal decomposition (SOD)
and its application in extracting linear normal modes (LNMs) of multi-degree-of-freedom and distributed
parameter vibration systems. The new method overcomes major deficiencies inherent in the POD when
applied to structural vibration analysis. In contrast with the POD, the SOD does not require an a priori
knowledge of system’s mass matrix for modal identification. Furthermore, it also overcomes the POD’s
characteristic limitation that the principal directions or proper orthogonal modes (POMs) are not uniquely
defined for comparable proper orthogonal values (POVs). In addition, the SOD-based identification also
provides accurate estimates of natural frequencies for the identified LNMs.

The POD, also known as Karhunen–Loève decomposition, principal component analysis or singular-value
decomposition is a powerful multivariate statistics method and has been widely used in engineering areas
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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to capture the dominant components or modes. In nonlinear dynamics field, the POD has been used to
extract the dimension information from an embedded attractor [1,2]. In signal processing, the POD
is employed to identify subspaces to which clean orbits are constrained [3–5]. In turbulent flow
analysis, Holmes et al. [6] used the POD to extract energy coherent structures from turbulent velocity
fields.

In structural vibration areas, recent efforts are directed towards relating POMs to LNMs of vibration
systems. Feeny and his colleagues have been particularly active in this field. In Ref. [7], Feeny and Kappagantu
report that for a discrete vibration system, the POMs of simulated vibration data converge to the LNMs in
the undamped free vibration case. Kerschen and Golinval [8] reach a similar conclusion by employing
the singular-value decomposition. In a later work, Feeny [9] extends the above results to a continuous
vibration system. Feeny and Liang [10] extend the POD results to the random excitation environment to
address multimode free vibration problems. These new findings provide a promising alternative to the
traditional modal analysis since there is no need to measure the external force as it is required for
frequency domain modal analysis. However, in practical applications of the POD there are several limitations
that need to be overcome. The first problem is that the discrete normal vibration modes are orthogonal
with respect to the mass matrix of the system, while the POMs are orthogonal with respect to each other.
In Ref. [7], it is shown that if a raw vibration data is pre-multiplied by the corresponding mass matrix
the resulting POMs will approximate actual vibration modes. Therefore for practical purposes, the mass
matrix has to be known a priori. The second problem is related to an inherent shortcoming of the POD,
that is, for two comparable POVs the corresponding POMs are not uniquely defined. In vibration
analysis, this translates into the following problem: when the system’s response contains two LNMs,
whose coordinates have comparable oscillation amplitudes, the POD will not be able to differentiate them.
In Ref. [11], Han and Feeny state that for a system in resonance one can use raw vibration data in the
POD analysis to extract the vibration mode in resonance and proposed a filter-based POD technique
to extract the other desired vibration modes.This makes it possible to successfully extract the desired mode if
the raw time series contain only corresponding frequency information but the frequency domain analysis is
still required.

In Section 2 the SOD and some of its properties are described. The applications of the SOD to a multi-
degree-of-freedom free vibration system for undamped and lightly damped cases are presented in more detail.
A multi-degree-of-freedom forced vibration and a distributed-parameter vibration cases are also investigated.
The numerical results are given and compared with those given in Ref. [7]. We conclude with the discussion
and summary of the results.
2. Smooth orthogonal decomposition

The basic idea of the SOD derives from the optimal tracking idea advocated in Ref. [12], where a scalar
damage observer was proposed. It was further developed into the SOD for multidimensional damage
identification and slow-time trajectory reconstruction in a hierarchical dynamical system [13,14]. The idea is
that given noisy multivariate measurements that contain some deterministic (i.e., smooth in time) signals one
needs to look for the projections that are smooth in time to identify deterministic trends. At the same time one
needs to require the maximum possible variance of the projections to eliminate constant projections. In what
follows, for completeness, we provide a brief derivation of the SOD and emphasize some of its properties that
are in contrast with the POD.
2.1. The SOD derivation

Given a sampled scalar field in the form of a matrix X 2 Rn�m, where each column contains a scalar time
series of measurement taken at m different spatial locations sampled using a constant Dt sampling period, we
are looking for a linear projection of that matrix q ¼ X/, where / 2 Rm�1 and q 2 Rn�1, such that this
projection keeps not only the maximum possible variance of the original field, but is also as smooth in time
as possible.
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To describe the smoothness of the projected field, we introduce a ðn� 1Þ � n differential operator

D ¼
1

Dt

�1 1 0 . . . 0

0 �1 1 . . . 0

..

. . .
. . .

. . .
. ..

.

0 . . . 0 �1 1

2
66664

3
77775

and use the approximate velocity matrix V ¼ DX as the matrix that describes the time fluctuations in X. Thus,
the SOD idea translates into the following constrained maximum variance problem:

max
/
kX/k2 subject to min

/
kV/k2 or max

/
lð/Þ ¼

kXfk2

kVfk2

� �
, (1)

where the mean has been subtracted from the columns of the matrices X and V. Now the numerator of the
above expression can be written as

kX/k2 ¼ ðX/ÞTX/ ¼ /T
ðXTXÞ/ ¼ n /TRX/, (2)

where RX is the covariance matrix of X. Similarly, we can show that kV/k2 ¼ ðn� 1Þ/TRV/, where RV is the
covariance matrix of V. Both of these matrices are numerical approximations of the corresponding true
covariance matrices. Thus, Eq. (1) becomes the following Rayleigh’s quotient problem:

max
/

lð/Þ ¼
/TRX/

/TRV/

� �
. (3)

In order to obtain the stationary point of Eq. (3) we differentiate it with respect to /, to obtain

rlð/Þ ¼ 0 ¼
2ð/TRV/ÞRX/� 2ð/TRX/ÞRV/

ð/TRV/Þ2
. (4)

Thus, the SOD problem is transformed into a generalized eigenvalue problem

RX/i ¼ liRV/i; i ¼ 1; . . . ;m, (5)

where li are the generalized eigenvalues or smooth orthogonal values (SOVs) and /i are generalized
eigenvectors or smooth orthogonal modes (SOMs). By projecting our matrix X onto the SOMs we obtain
smooth orthogonal coordinates (SOCs) qi, whose degree-of-smoothness is described by the magnitude of SOVs,
refer to Eq. (1), higher values yielding smoother coordinates.

2.2. Basic properties of the SOD

One of the basic properties of the SOD, which is not shared by the POD, is that it is invariant with respect to
an invertible linear coordinate transformation. In other words the SOD of X and Y ¼ XR yield the same
SOCs, if the matrix R 2 Rm�m is invertible. To illustrate this property, the SOD problem for Y ¼ XR is written
as

ðXRÞTXR ~/i ¼
~liðDXRÞTDXR ~/i; i ¼ 1; . . . ;m, (6)

which translates into

RTRXR ~/i ¼
~liR

TRVR ~/i; i ¼ 1; . . . ;m. (7)

Now multiplying both sides with R�T we obtain

RXR ~/i ¼
~liRVR ~/i; i ¼ 1; . . . ;m, (8)

which is the same generalized eigenvalue problem as described by Eq. (5) with /i ¼ R ~/i. Therefore, the new
generalized eigenvectors or the SOMs for Y are

~U ¼ R�1U, (9)
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where the columns of modal matrix U are composed of the original SOMs /i and the columns of modal matrix
~U are formed by the SOMs ~/i.
Another characteristic of the SOD is that the smoothness of SOCs is characterized by SOVs. This provides

the SOD with a distinctive ability to differentiate SOCs according to their frequency content. The lower-
frequency components result in smoother SOCs, while higher frequencies contribute to the jaggedness of the
trends. To illustrate this point we will consider several examples and compare the performance of the SOD
with the POD. In all the examples the columns of the matrix X will be composed of only one harmonic signal,
since the SOD is invariant with respect to a nonsingular coordinate transformation.

For the first example we assemble the matrix X from time histories of several sinusoidal waveforms of the
same amplitude but different frequencies. Let us say that columns of the matrix X are formed from the
following signals: xk ¼ sin 20pkt, where k ¼ 1; 2; . . . ; 10. The resulting trajectory in the space of coordinates xk

is bounded with a sphere of radius one, since all coordinates oscillate with unit amplitude. Therefore, data
variance in any spatial direction should be close to 1=2, which should cause problems for the POD. We use a
total of 334 points for each column sampled at Dt ¼ 3� 10�4. The results are shown in Fig. 1. It is observed
that the SOD clearly identifies each signal by its frequency. In fact, from the obtained data depicted in
Fig. 1(a) it is estimated that lk ffi ð20pkÞ�2 or the square root of the SOV approximates the reciprocal of the
corresponding SOC’s fundamental frequency ok ¼ 20pk. In contrast, as expected, the POD applied to the
same matrix X cannot uniquely identify the principal directions of each component and yields confusing
results.
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Fig. 1. Comparison of the SOD and POD performance in signal identification for xk ¼ sin 20pkt, k ¼ 1; 2; . . . ; 10. Plots (a)–(e) correspond
to the SOD and plots (f)–(j) to the POD.
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The observed relationship between the frequency and the SOV still holds for another example, where X is
assembled from the same signals as in the example one, but with different amplitudes: xk ¼ ð11� kÞ sin 20pkt,
k ¼ 1; . . . ; 10 (see Fig. 2). Now, our trajectory in the space of coordinates is bounded by the ellipsoid, major
and minor axis of which are proportional to the signal amplitudes and are aligned along the corresponding
coordinates. For this example we get exactly the same SOD results as for the first one, since each component
still has the same distinct frequency. However, the POD now can also clearly identify all the signals from the
matrix, since they have different amplitudes, and variances along the principal coordinates are distinct and
identifiable. In this example singular values obtained through the POD analysis scale linearly with respect to
the corresponding signal amplitudes.

In the final example, we look at the matrix X that is composed of xk ¼ ð11� kÞ sin 2p20t, k ¼ 1; . . . ; 10, in
which every column has exactly the same signal of different amplitudes (see Fig. 3). Therefore the matrix X is
rank one and the corresponding trajectory in the space of coordinates is just an inclined straight line. Here,
both the SOD and POD will fail to identify each of the components uniquely. However, the POD is still able to
extract the characteristic shape of the signals as the first POC, since there is only one distinct maximum in
variance along the direction of the inclined line in the space of coordinates. The SOD will fail to identify any
trend in this case since both RX and RV are singular and rank one. Therefore, if the trajectory matrix X is rank
one, the SOD-based identification will fail and one has to use the POD to identify the main trend in the data.
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Fig. 2. Comparison of the SOD and POD performance in signal identification for xk ¼ ð11� kÞ sin 20pkt, k ¼ 1; . . . ; 10. Plots (a)–(e)

correspond to the SOD and plots (f)–(j) to the POD.
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Fig. 3. Comparison of the SOD and POD performance in signal identification for xk ¼ ð11� kÞ sin 2p20t, k ¼ 1; . . . ; 10. Plots (a)–(e)

correspond to the SOD and plots (f)–(j) to the POD.
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Usually one does not expect a rank one trajectory matrix, which can only arise through redundant
measurements. Please note that even when the components of the trajectory matrix are of exactly the same
form but differ in phase the SOD is still expected to work.

3. SOD-based modal analysis

By definition a normal mode shape describes the synchronous motion of the system when motions of all
degrees of freedom are equi-periodic. The corresponding time histories or the modal coordinates give the time
response of these synchronous motions. The response of a linear vibrational system is a superposition of these
synchronous motions. Therefore, in modal analysis, we are looking at expanding the trajectory matrix X into
the following two matrices:

X ¼ QWT, (10)

where Q 2 Rn�m is a matrix composed of modal coordinates and W 2 Rm�m is a modal matrix composed of
corresponding LNMs. Therefore, the solution to the eigenvalue problem for a classical multi-degree-of-
freedom undamped free vibration system,

M €xþ Kx ¼ 0, (11)
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satisfies the expression

KW ¼MWX, (12)

where X is a diagonal matrix of squares of the natural frequencies, o2
i , of the associated LNMs.

Now, considering the basic idea of the SOD expressed by Eq. (2),

max
/

lð/Þ ¼
kX/k2

kV/k2
¼

/TXTX/

/TXTDTDX/

� �
(13)

and examining the term DTDX carefully, one can find that it is just an approximation of the negative
acceleration matrix of X

DTDXffi � €X. (14)

The same acceleration matrix can be derived from Eq. (11) for a nonsingular mass matrix M as

€x ¼ �M�1Kx ) €X ¼ �XKTM�T, (15)

where X is the trajectory matrix of x. Substituting this expression into Eq. (13), we have

max
/

/TXTX/

/TXTXKTM�T/
. (16)

The solution to this maximization problem is obtained as before to yield

XTX/ ¼ lXTXKTM�T/, (17)

which further simplifies to

KU�T ¼MU�TK. (18)

Therefore, referring to Eq. (12), columns in U�T give the LNMs and K is a diagonal matrix with its elements
li ¼ 1=o2

i providing the natural frequency information.

4. Application of the SOD to discrete vibration systems

In order to compare the performance of the SOD with the POD in modal identification, we use the examples
given in Ref. [7]. All the values used are exactly the same as in Ref. [7] unless it is noted explicitly.
4.1. Linear undamped free vibration

We consider a three-degree-of-freedom mass–spring system connected like it is shown in Fig. 4. The
differential equation of motion for this system is the same as Eq. (11), with

M ¼

2 0 0

0 1 0

0 0 1

2
64

3
75 and K ¼

2 �1 0

�1 2 �1

0 �1 1

2
64

3
75. (19)
k1 k2 k3 
m1 m2 m3

x1 x2 x3

Fig. 4. A three-degree-of-freedom mass–spring vibration system.
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The initial displacements are xð0Þ ¼ ½1; 0; 0�T and the initial velocities are vð0Þ ¼ ½0; 0; 0�T. The LNMs
assembled into a modal matrix are

W ¼

0:3602 �0:7071 0:2338

0:5928 0:0000 �0:8524

0:7204 0:7071 0:4676

2
64

3
75, (20)

where each modal vector is unitary orthogonal with respect to the mass matrix. The corresponding
modal frequencies are the square roots of the eigenvalues of the mass normalized stiffness matrix, that is
o1 ¼ 0:4209, o2 ¼ 1:0000, and o3 ¼ 1:6801. Following the modal analysis steps, the modal initial conditions
of the system are

x̂ð0Þ ¼ W�1xð0Þ ¼ ½�0:6777; 1:1547; 0:4554�T; v̂ð0Þ ¼ W�1vð0Þ ¼ ½0; 0; 0�T, (21)

where W is now mass normalized. Then, the solution in modal coordinates is

x̂ðtÞ ¼ ½�0:6777 cosð0:4209tÞ; 1:1547 cosðtÞ; 0:4554 cosð1:6801tÞ�T (22)

and the solution in the original coordinates is xðtÞ ¼ Wx̂ðtÞ. The numerically obtained time series of the system
vibration is used to form the trajectory matrix X. Then X is used to form the covariance matrix
RX ¼ ð1=nÞXTX.

For the POD-based modal analysis, RX needs to be pre-multiplied by the corresponding mass matrix M to
obtain RXM and the eigenvectors of RXM are expected to converge to the LNMs of the vibration system [7].
For the SOD-based method, however, we only need the matrix X and V calculated by DX without knowing
the mass matrix. In addition, the SOD also provides good estimates of the natural frequencies associated with
the identified LNMs.

The results of this calculation are shown in Table 1. Here, the first column lists different sampling time steps
used in the simulation and the second column shows the total number of samples used for each column of X.
The last three columns show the mean errors in estimating LNMs for both methods and the corresponding
natural frequencies for the SOD. The errors for the estimated LNMs (EPOD and ESOD) were calculated by
taking the mean of the norm of the error in all identified modes, and the errors in the estimate of the natural
frequencies (Eo) are just the mean of all individual errors.

For this particular vibration system the SOD results are comparable to the POD results and in some cases
substantially improve upon the latter. In addition, the SOD gives very accurate estimates of the natural
frequencies associated with the identified LNMs. The errors in the estimates improve with the decrease in
sampling time step and increase in the total number of points.

4.2. Linear free damped vibration

Here, we use the same vibration system as in the previous section but with the modal damping factors
x ¼ 0:1, 0.05 and 0.01 added to the system one by one. Here, the resultant system is simulated for each
damping factor and both the POD- and SOD-based modal analyses are performed. The results are shown in
Table 2. From these results it is apparent that for a damped system, as long as the frequencies associated with
Table 1

Mean of errors in identified modes and frequencies

Dt Samples EPOD ESOD Eo

0.2986 400 0.0042 0.0025 0.0070

0.1493 200 0.0511 0.0586 0.0027

0.1493 400 0.0065 0.0063 0.0011

0.1493 800 0.0044 0.0024 0.0012

0.1493 1600 0.0040 0.0022 0.0016

0.0746 1600 0.0044 0.0024 0.0008
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the vibration modes are distinct and the sampled time history contains several periods, the SOD can
successfully extract the active vibration modes and its performance is superior to the POD. This is especially
true for the higher values of the damping factor.

For higher values of damping starting at about x ¼ 0:2 the results for the SOD start to deteriorate
(ESOD ¼ 0:3846 and EPOD ¼ 1:1562). However, this is only true for the third highest mode. In fact, most of the
increase in the error ESOD in Table 2 can be attributed to this mode alone. The main reason for this
deterioration is that this mode becomes highly damped and its effects are not apparent in the trajectory
matrix. However, the quality of the first two SOMs remains at least as good as undamped POMs even
for x ¼ 0:3. Therefore, the SOD still can be used to correctly identify active vibration modes in a highly
damped system.

4.3. Forced damped vibration system

For a forced damped vibration system, when the system is in a steady state, each of the masses vibrates with
the same frequency. Therefore, all measured time series are equally smooth. This is very similar to the third
case of the examples discussed in the SOD property section. However, each of the masses will oscillate with
different phase, therefore avoiding the singularity observed in that example. When a system is not in
resonance, there is no obvious energy distribution preference and neither POD nor SOD can extract the
vibration modes. However, if the forcing frequency equals to one of the natural frequencies, the dominant
vibration mode can be identified by either the POD or SOD. Table 3 lists some of the results for both methods.
We again consider the system depicted in Fig. 4, except that a harmonic force of unit amplitude is applied to
the first mass. The forcing frequency is taken to equal 1.6717, which matches the third damped modal
frequency.

As described in Refs. [7,8], when one of the modes is in resonance we can use the directly obtained time
series to form a matrix and perform the POD analysis without pre-multiplying the trajectory matrix by a
corresponding mass matrix. The corresponding results from the POD are: the eigenvector for the damping
factor equal to x ¼ 0:01 is ½�0:2324; 0:8524;�0:4684�T and the mean error norm is 0.0016. For modal damping
x ¼ 0:05, the eigenvector is given by ½�0:1934; 0:8513;�0:4878�T and the mean error norm is 0.0451. When the
damping factor goes to 0.1 the first eigenvector is ½�0:0200; 0:8360;�0:5483�T and the mean error norm is
0.2291. We can see the performance of the raw-data POD is comparable to the POD procedure in the
resonance conditions.
Table 2

Mean of errors for free damped vibration system

Dt Samples x EPOD ESOD Eo

0.1493 400 0.1 0.2484 0.0611 0.0277

0.0746 800 0.1 0.1141 0.0622 0.0192

0.1493 400 0.05 0.0756 0.0197 0.0142

0.0746 800 0.05 0.0646 0.0168 0.0085

0.1493 400 0.01 0.0071 0.0071 0.0037

0.0746 800 0.01 0.0046 0.0039 0.0013

Table 3

Error means for forced damped vibration system

Dt Samples x EPOD ESOD Eo

0.0746 800 0.10 0.2103 0.1694 0.0067

0.0746 800 0.05 0.0247 0.0110 8:5� 10�4

0.0746 800 0.01 8:4� 10�4 0.0074 0.0033
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4.4. A case with comparable modal energies

Here, a particular case when the POD fails is investigated. As it was described in the introduction, when two
POVs are comparable, the POD fails to uniquely identify the corresponding principal directions (case one in
the examples for the SOD section). In this case, the SOD can be used as an alternative for extracting LNMs.
Again, we use the example given in Ref. [7] to illustrate this point. All the parameters used are the same except

M ¼

1 0 0

0 1 0

0 0 1

2
64

3
75 and K ¼

2 �1 0

�1 2 �1

0 �1 2

2
64

3
75. (23)

The natural frequencies for this case are 0.7654, 1.4142, and 1.8478. The corresponding LNMs are

W ¼

0:5000 �0:7071 �0:5000

0:7071 0:0000 0:7071

0:5000 0:7071 �0:5000

2
64

3
75.

The initial conditions are still xð0Þ ¼ ½1; 0; 0�T and vð0Þ ¼ ½0; 0; 0�T. Again, after forming the trajectory matrix X
(sampling time is 0.1493 and 400 sample points are used) we perform the POD and SOD analysis. The
calculated POVs are 0:1236; 0:1264 and 0:2493 and the corresponding POMs are given by

WP ¼

0:0763 �0:6706 �0:7379

0:9947 0:1018 0:0103

0:0682 �0:7348 0:6748

2
64

3
75.

It can be seen that the POMs fail to correlate with the LNMs except maybe for the second mode. The
corresponding SOMs are given by

WS ¼

0:5043 �0:7143 0:5158

0:7049 0:0007 �0:7010

0:4988 0:6966 0:4924

2
64

3
75.

Here, we observe a much better approximation and the mean norm of the error for this SOD case is acceptably
low: 0.0127. Therefore, the SOMs can still approximate the actual LNMs, while the POD fails to work in this
case. In addition, the SOD also provides estimates of natural frequency: 0.7480, 1.4162 and 1.8355, which
approximate the actual frequencies quite well.

5. Application to a distributed-parameter vibration system

A numerical simulation is also performed to validate the applicability of the proposed method in extracting
modal parameters from a continuous vibration system. We consider a uniform cantilever beam clamped at
x ¼ 0 and free at x ¼ L, where x is a spatial coordinate. All the parameters are the same as in [9]. That is, we
assume a uniform mass per unit length mðxÞ ¼ 1 with the stiffness of EI ¼ 1 and the length of the beam L ¼ 1.
Ten sampling points are chosen along the beam equally spaced from x ¼ 0:1 to x ¼ 1. The corresponding
initial lateral displacements at these points are assumed to be ½0:05; 0:05; 0:05; 0:05; 0:1; 0:12; 0:25; 0:5; 1; 2� and
the initial velocities are set to zero. The characteristic equation for a cantilever beam is given by

cos bL cosh bL ¼ �1, (24)

where b4 ¼ o2. The first ten successive values of br (r ¼ 1; . . . ; 10) are: 1.8751, 4.6941, 7.8548, 10.9955,
14.1372, 17.2788, 20.4204, 23.5619, 26.7035, and 29.8451. The corresponding eigenfunctions are in the
following form

crðxÞ ¼ Ar sin brx� sinh brx�
sin brLþ sinh brL

cos brLþ cosh brL
cos brx� cosh brx
� �� �

; r ¼ 1; 2; . . . . (25)
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Fig. 5. Comparison of the POD- and SOD-based methods in extracting LNMs from a vibration scalar time series obtained using a model

for a free vibration of a cantilever beam. The solid lines represent the actual LNMs, the n correspond to the modes identified by the POD

and the SOD results are given by �.
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By using the ten initial displacements, we can determine the coefficients Ar (r ¼ 1; . . . ; 10) to be:
0:3480;�0:2213; 0:1389;�0:0598; 0:0463;�0:0166; 0:0227;�0:0141; 0:0112; and 0:0010. In order to use the
POD- and SOD-based modal identification, we first need to form an ensemble matrix which is composed by
the oscillation time series at the different sampling points along the beam. The sampling time Dt ¼ 0:00179
and we use 3990 points to generate the displacement history. Following the established procedures for the
POD- and SOD-based modal analysis, we can compare the 10 modes given by the POD and SOD to the actual
LNMs. In the POD case, the norm of errors between these modes are: 0:0612; 0:2667; 0:3480; 0:3858;
0:4652; 0:5553; 0:4502; 0:6007; 0:5065; 0:4304 respectively and the errors given by the SOD are: 0:0041; 0:0026;
0:0008; 0:0005; 0:0008; 0:0027; 0:0012; 0:0012; 0:0011; 0:0075 respectively. The mean of all the errors for the
POD case is 0.4070 and the same mean for the SOD is 0.0022, which shows two orders-of-magnitude
improvement. Fig. 5 gives the visual comparison of the identified POD and SOD modes to the actual LNMs.
In addition, the SOD-based method provides estimates for the corresponding natural frequencies:
3:5102; 21:9625; 61:6918; 120:6419; 198:7223; 294:8953; 407:2379; 532:4851; 665:5737; 799:2510, which give the
following relative errors: 0:0017; 0:0033; 0:0001; 0:0022; 0:0057; 0:0124; 0:0239; 0:0426; 0:0714; and 0:1145 when
compared to the actual natural frequencies.

6. Discussion

The results of the numerical study described in the previous section illustrate the application of the SOD to
identifying LNMs of several simple vibration systems. In practical situations the choice of the correct
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sampling time will be of critical value. Here, results for only two different sampling times of the vibration
signals were provided. For the lumped-parameter vibration cases the largest sampling time used is well under
the time interval dictated by the Nyquist’s criteria. However, the results also show that the reduction of
the sampling time considerably improves the quality of the identified natural frequencies and to a lesser extent
the LNMs.

In general, the following general considerations need to be taken into account when choosing the sampling
time. The Nyquist criteria associated with the highest modal frequency provides the upper limit on the
sampling time, which will usually be quite large. The lower limit on the sampling time will be imposed by the
total number of samples in each time series that can be analyzed, or m. For the SOD to work we need to
capture at least one cycle of first mode oscillation. Therefore, the lower limit on the time step will be given by
dividing the time period corresponding to this cycle by m. This might explain comparatively poor results for
the lower modes in the distributed-parameter example, since only three complete first mode cycles are included
in the data.

In the absence of noise the quality of the derivative matrix will always be better for smaller sampling times.
However, in a noisy environment we expect to have some noise floor (approximately, corresponding to the
time interval in which data is mainly dominated by noise) after which the reduction in time step will not bring
any considerable improvement in quality. This can be mitigated by collecting several trajectory matrices and
stacking them together in one trajectory matrix or doing ensemble average.

In many practical applications, most of the time, accelerations are measured instead of displacements. For
linear systems the acceleration matrix can be obtained by appropriate nonsingular transformation of the
displacement trajectory matrix; see Eq. (15). If the methodology described here is directly applied to the
acceleration matrix, the results need to be interpreted using Eq. (9), where R ¼ �KTM�T. Therefore, for
general applicability the acceleration matrix needs to be integrated to obtain the velocity and displacement
matrices.

7. Conclusions

The ability of the POD to extract the principal components of a multivariate data set has made it a versatile
tool frequently applied in engineering fields. Recent research interests have been focused on relating the POMs
to the vibration modes and many authors have contributed to this area. Current research results show that the
POMs converge to the linear vibration modes in the undamped free vibration case. This result is also
applicable to the lightly damped vibration environment. Although these new findings shed light on a
promising alternative to the traditional experimental modal analysis technique, there are several limitations to
be addressed for the POD method to be used practically. The most important one is that the mass matrix of
the system has to be known a priori, which is not always available in real application, especially for a
distributed-parameter system. The other limitation is inherent in the POD analysis, that is, it cannot uniquely
distinguish between the principal components that have comparable proper orthogonal values.

In this paper, a new multivariate data analysis tool (SOD) that overcomes the aforementioned limitations of
the POD was presented. The SOD can be considered an extension of the POD, which acquires the ability to
separate a multivariate data based on their characteristic frequency components. Mathematical justification
for the SOD-based modal identification was given. Several detailed numerical examples were given to illustrate
the SOD-based procedure, performance, and advantages. Specifically, it was shown that the SOD was
invariant with respect to invertible coordinate transformation, which makes the SOD-based modal
identification independent of a priori knowledge of the mass matrix. This also allows for convenient
placement of transducers on structures of intricate shape.

Numerical simulations were used to show that for the undamped free vibration cases, lightly damped
vibration and the distributed-parameter vibration case, the SOD yields the results that are comparable to or
even better than those for the POD. In addition, the SOD does not require the determination of the mass
matrix and can overcome the intrinsic limitation of the POD when the principal axes are not uniquely defined.
In damped vibration cases it was observed that the SOD provided more accurate modal identification for
higher damping ratios. In addition, the SOD provides accurate estimates of the natural frequencies for the
identified modes.
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